

Tribal Update East Waterway Sediment Cleanup

Presented by the East Waterway Group:

- Port of Seattle
- King County
- City of Seattle

April 29, 2020

Objectives

- 1. Feasibility Study overview
 - Context for discussions
- 2. Recent EWG engagements with EPA
- 3. The natural background conundrum

Preliminary Remediation Goals (PRGs)

Risk Driver	286	RAO	Basis	Spatial Scale
Total PCBs	2 ug/kg dw	Protection of Human Health for Seafood Consumption (RAO 1)	Natural background	Site-wide
	250, 370 ug/kg dw	Protection of Fish (RAO 4)	RBTC – brown rockfish (250) and English sole (370)	Site-wide
	12 mg/kg OC (SQS)	Protection of the Benthic Community (RAO 3)	RBTC	Point
Arsenic (mg/kg dw)	7	Protection of Human Health for Direct Contact (RAO 2)	Natural background	Site-wide (Netfishing) and Clamming Areas
	57 (SQS)	Protection of the Benthic Community (RAO 3)	RBTC	Point
сРАН (µg TEQ/kg dw)	Undefined	Protection of Human Health for Seafood Consumption (RAO 1)	RBTC	Site-wide
	NA	Protection of Human Health for Direct Contact (RAO 2)	RBTC	Site-wide Clamming Areas
Dioxins/Furans (ng TEQ/kg dw)	2	Protection of Human Health for Seafood Consumption (RAO 1)	Natural background	Site-wide
TBT (mg/kg OC)	7.5	Protection of the Benthic Community (RAO 3)	RBTC	Point
Other benthic risk drivers	SQS	Protection of the Benthic Community (RAO 3)	RBTC	Point
	RBTC – risk	based threshold concentration	NA – not applicable	

Remedial Action Levels (RALs)

Risk Driver Total PCBs	RAL 12 or 7.5 mg/kg OC (site-wide)	Objectives Achieved Not expected to achieve natural background-based PRGs.		
Dioxins/Furans	25 ng TEQ/kg dw (site-wide)	RALs result in significant risk reduction. Achieves benthic and ecological PCB PRGs.		
Arsenic	57 mg/kg dw (site-wide)	Achieves benthic PRG. Achieves direct contact PRG at completion of construction but then rises back above over time		
TBT	7.5 mg/kg OC (site-wide)	Achieves benthic PRG		
1,4-Dichlorobenzene				
Butyl benzyl phthalate				
Acenaphthene				
Fluoranthene	SQS (benthic SCO; site-wide)	Achieves benthic PRG		
Fluorene				
Mercury				
Phenanthrene				

Remediation Areas

- RALs applied to the upper 2 feet north of Spokane Street Bridge
- RALs result in remediating 121 acres (PCB RAL = 12 mg/kg OC) of 157 acres (132 acres with PCB RAL = 7.5 mg/kg OC)
- Remediates 77% to 84% of the Site

Components of the Remedial Alternatives

<u>Open-water</u>

- 1 Removal with capping and ENR where applicable
- 2 Removal with capping where applicable
- 3 Maximum removal

<u>Underpier</u>

- A MNR
- **B** In situ treatment
- C+ Diver-assisted hydraulic dredging
 followed by in situ treatment for PCBs or Hg
 CSL; in situ treatment elsewhere exceeding
 RALs
- **E** Diver-assisted hydraulic dredging followed by in situ treatment

Retained Alternatives

Action Alternatives	Technologies for Open-water Areas	Technologies for Restricted Access Areas (Underpier and Low Bridges)	PCBs RAL All Areas	
No Action				
1A(12)		A MNR		
1B(12)	Removal with capping and	B In situ treatment		
1C+(12)	ENR where applicable	C+ Diver-assisted hydraulic dredging followed by in situ treatment for PCBs or mercury > CSL; in situ treatment elsewhere		
28(12)		B In situ treatment	12 mg/kg OC	
2C+(12)	2. Removal with capping where applicable	C+ Diver-assisted hydraulic dredging followed by in situ treatment for PCBs or mercury > CSL; in situ treatment elsewhere		
3B(12)	3. Maximum removal to the	B In situ treatment		
3C+(12)	extent practicable	C+ Diver-assisted hydraulic dredging followed by in		
2C+(7.5)	Removal with capping and ENR where applicable	situ treatment for PCBs or mercury > CSL; in situ treatment elsewhere	7.5 mg/kg OC	
3E(7.5)	Maximum removal to the extent practicable	E Diver-assisted hydraulic dredging followed by in situ treatment	,	

Remedial Alternatives

Numbers in pie chart represent acres; total sediment area is 157 acres

Chemical and Physical Modeling

- Net depositional, with sedimentation rates from 0 to 4.2 cm/year
- Sediment load: 99% from the Green/Duwamish River
 - Less than 1% from the upstream LDW Superfund site
 - 0.2% to 0.3% originates from EW storm drains and CSOs
- Vessel propwash mixing 0.5 to 2 ft depths

Predicted Site-wide SWAC for PCBs

Natural Background is Not Attainable for PCBs, Arsenic and Dioxin/furan

- Incoming upstream concentrations
- Contaminated sediment left in place because it is impracticable to remove
- Mixing from vessels throughout construction and after
- Residuals from dredging

Maximum Possible Remediation Evaluation Conceptual Cross Section

Attainable vs Anthropogenic Background

- Anthropogenic background includes
 - Upstream inputs
 - Controlled lateral inputs
- Anthropogenic background does not include

Long-Term Risks and Costs FS Figure 11-4

EWG Activities

- May 2019: EPA Region 10 and EWG met to discuss how to reach a final remedy when there are unachievable standards
- June 2019: EPA Region 10 described their ideas for a final remedy, which differed substantially from what was communicated in person in May
- August 2019: Port and County sent letters to EPA Region 10 Regional Administrator, Chris Hladick, expressing concerns with EPA's stated approach

EWG Activities (cont.)

- December 2019: Port met with EPA HQ regarding Port proposal for EPA to waive unachievable standards
- January 2020: Port sent letter to EPA HQ to respond to EPA questions and to provide further rationale for a TI waiver
- February 2020: EPA Region 10 and HQ staff met with EWG to discuss EPA's options regarding natural background
- April 2020: Per EPA's request, EWG sent letter to EPA in response to February 2020 meeting

EWG Concerns with Natural Background PRG

- Retaining unachievable cleanup levels in ROD even with a future adjustment to regional/anthropogenic background:
 - It misleads the public
 - The extensive cleanup is perceived as not complete
 - The remedy will be viewed as a failure because it will not come close to meeting the natural background cleanup levels
 - Creates uncertainty and unnecessary/protracted legal/regulatory process for decades

EWG Concerns with Adopting Anthropogenic Background at a Later Date

- What system will reach, what is achievable needs to consider all factors
- EPA method for determining does not account for contamination that can't be remediated
- Undefined when/if it happens
 - The risks will fall to the public

Management of Natural Background Issue

- TI wavier would
 - Ensure public is aware of limitations of achieving background based cleanup standards at EW
 - Not affect the remedy to be selected by EPA
 - Not undermine the cleanup or the level of protection achieved
 - Ensure public investments go where they have the greatest environmental and public health benefit
 - Provide a clear estimate of the cost to achieve the cleanup goals
 - Facilitate a cleanup agreement

Wrap Up

- Goals today
 - To familiarize the FS alternatives and practical feasibility issues with meeting NB and AB cleanup levels
 - Keep Tribes informed of communications with EPA

Questions/Discussion

ED_006289_00008244-00021